BARNYARDS \&
 BACKYARDS

Valuing forage resources with the Forage Risk Analyzer tool

(FRA) can explore a potential lease between two parties. Platte County producers Ryan and Lonna Johnson* were deciding whecher a potential forage lease with a
neighboring landowner would e feasible Th e potential neighboring landowner would be feasible. The potentia
lease involved converting an old stand of affalfa into irrigated pasture.
After entering the expected revenues and expenses,
the FRA tool generates a Resource Net Return Summary the FRA tool generates a Resource Net Return Summay
(Figure 1), and allows users to allocate expenses and (Figure 1), and allows users to allocate expenses and
revenues bewwen the Johnsons and their neighbor. The Johnsons would receive an estimated 90.1 percent of the net return and the landlord 9.9 percent, when including all
costs and returns.
Risk Analysis using the FRA Tool
The capacity to consider risk under the Analysis tab
is a unique feature of the FRA tool. In budgeting or other is a unique feature of the FRA tool. In budgeting or other
forecasting, we often make assumptions about estimates forecasting, we often make assumptions aboutessimates
(production factors, costs, etc.), without the capability to consider the inherent variability in these values. We often assume a value such as available animal unit
months (AUMs) is a fixed number; the question then months (AUMs) isa fixed number; the question then
becomes how does the analysis (and the associated decisio change if the AUM number is higher or lower than expected?
The Johnsons are concerned about variations in the
available AUMs of forage under the potential lease. The available AUMs of forage under the potential lease. The
agreement could become infeasible for one or both of the agreement could become infeasible for one or both of the
parties if the available AUMs fall below a certain point. Users complete the analysis by selecting either Supplier
User, or Total Lease Arrangement and any one of the User, or Total Lease Arrangement and any one of the
six factors for risk analysis. By first choosing to vary the six factors for risk analysis. By first choosing to vary the
number of expected AUMs, we can account for a large portion of the risk in the proposed lease.
First, we select the Total Lease Arrangement, then select
AUMs Per Year as the uncertain variable. For most likely AUMs Per Year as the uncertain variable. For most likely
we enter 420 AUMs, at the low end we enter 300 , and 500 AUMs for the high value (Figure 2). Clicking the Run button generates a probability curve for net returns, given the fluctuating number of AUMs (Figure 3). The curve shows a 50 -percent probability of earning a net return of
no higher than $\$-64.20$ per AUM and ranging between $\$-7.70$ and $\$-46.60$ per AUM per year. $\$-7.0$ and $\$-46.60$ per AUM per year.
Note that the depreciation expense for the 70 cows ($\$ 28,0001$ year) is the factor driving the negative returns on the Johnson's side of the agreement. If we zero-out the
70 cows and their initial value under the Livestock tab and we remove the depreciation expense entered under the Allocation tab, we see a revised net return of $\$ 575$ with a split of $\$ 3,400$ landowner (54.6 percent) and the Johnsons at $\$-2,825$ (45.4 . percent).
Rerunning the analysis for AUMs provides a bit Rerunning the analysis for AUMs provides a bit
different perspective. The new curve show a 5 -percent
probability of earning a net terurn of no higher than $\$ 1.40$ per AUM, ranging as low as $\$ 1$ and as high as $\$ 1.60$ per
AUM per year (Figure 4). AUM per year (Figure 4).

For more information
The Forage Risk Analy
The Forage Risk Analyzer (FRA) is just one of
many useful resources available at RightRisk.ors many useful resources available at RiighRRisk.org.
The Machinery Risk Calculator, Risk Scenario Planning tool, and Enterrisis Risk Analyzer tool
help users include variability in risk k management help users include variability in risk management
planning. Instead of just assuming a single cost planning. Instead of just assuming a single cost
or production estimate, these tools allow the user or production estimate, these tools allow the us
to define a range of values to more accurately
evaluate the extent of possible results. Visit eviluate the extent of osssible res
Rightisisk.org today to get started.

Figure 5. FRA Animals per Year. Analysis for Example Forage Lease.

Tools available at RightRisk.org
Enterprise Risk Analyzer
expenses to cacculate and assign revenue and expenses to each enterprise activity. Allows users to enter a range of values for risk
sensitivity analysis.

Multi-Temporal Risk Analyzer
ulti-Temporal Risk Analyzer
Designed to allow users to analyze multi-year strategies and production decisions involving risk.

\section*{Preparation helps reduce blizzard mayhem

ORGANIZE FEED TO ENSURE STORM SURVIVAL

ORGANIZE FEED TO ENSURE STORM SURVIVAL

Brutal blizzards often occur in early fall, late spring, or after a period of mild weather. Worse they may come when producers are not prepared and hit with greater force and last longer than other storms.
Bizzards can cut survival rates of newborn calves, challenge the metabolism of livestock and block, or complicate access to feed. Organizing feed to help feed in the right place, and being equipped to get feed to cattle. Loplements - producers have devised a system based on prior experience wit
torms. Experience influences where they stack hay, where cattle are grazed during the year, and what equipment they buy
Planning and organization can prepare producers, including next-generatio ad novice producers, to get feed to their livestock and avoid challenges that me with storms.
Put Livestock in the Right Place
Placing livestock for access to feed is the oldest practice used in Wyoming. Moving cattle to thickets of brush and protected canyon floors are example
Range cattle were moved to sheltered sites where feed was available whenever bad weather was expected. Producers identified and saved sheltered spots for grazing during drifting snow and severe cold and wind chill. Effective managers also found locations where vegetation remained exposed or protrud bove snow cover.
Any blizzard survival location requires protective elements, water, and source of feed. Livestock must have a passable route to feed, whether it is
stacked, windrowed, or left standing. Moving livestock to feed sources during blizzard is fraught with risk and not recommended.
ut Feed in the Right Place
Having feed in the right location is usualy the top factor for winter cattle urvival. If feed is stacked in yards, it helps to use windy sites where snow is blown off rather than accumulate. Because the stacks serve as wind foils that ccumulate snow downwind, it is crucial to align stacks and access pathways they also blow clear. Understanding how your operation's topography and f feed becoming inaccessible Having more than one feed
half a mile from livestock, provide within a reasonable distance, such raditional drift patterns.
In flatter wind lactions, many Wyoming ranchers have erected larg wind shelters stocked with water and hay stacked along the inside perimeter.

Cattle become familiar with the structure and naturally move to it for shelter feed, and water. Structures can be permanent or temporary but allow produces to travel to the site to feed livestock rather than transport feed. Structure Remember, if all animals cannot be sheltered, they will be directly affected Renember, if all animals cannot be shel
The occasional need to move feed in or out is another consideration in choosing an optimal location. Placing major feed distribution points along developed and maintained public roads enhances the likelihood of open acces. where your neighbors have theirs - just in case
Invest in Infrastructure
Getting through a blizzard is usually three to five times harder than other storms. Think how a regular 6 -inch snow storm over 48 hours compares to a blizzard that drops 38 inches of snow over five days and blows it into drifts 8 to 10 feet high.
Many infrastructure needs, including equipment and horse power, are hay, you may be able to reach these on a snow machine, by horse, or on foot and hay, you may be able to reach these on a snow machine, by horse, or on foot and
simply hand-feed the hay. In some locations, horse-drawn hay sleds are feasible. Large bales require larger equipment, which may not easily traverse deep snow. Some producers use equipment such as dozers or crawlers to open pathways for traditional large-bale equipment. In the mountains, some Wyomin
producers use large multi-staged snow blowers 8 -10 feet wide and 60 inches high producers use large multi-staged snow blowers $8-10$ feet wide and 60 inches hig
to open pathways. During several disastrous blizzards, very large bulldozers were used to drag semi-truck trailers of hay through the snow, and volunteers fed hay from the loads.
Always remember, though, during severe blizzards, most heavy equipment is
dedicated to human concerns, not livestock.
Plan for the Big One
Members of the UW Extension Agriculture and Horticulture Initiative Tean can help you review your readiness and winter plans. Basing feed locations,
livestock positioning, and equipment on the worst-case scenario may be livestock positioning, and equipment on the worst-case scenario may be
expensive, but it could make the difference in your cattle's survival. Scott Cotton is the UW Extension area educator serving Converse, Natriona and
 scottonI@uuyo.edu.

5,700 in other lease-related expenses. Further costs in the budget were associated with the livestock and woul
no doubt be incurred whether on the o doubt be incurred whecher on the
lease or on the home place. In addition, if the Johnso continue the lease in future years, the other lease-related costs would likely go
Iown.
Finally, keep in mind that while the cow/calf herd is grazing on the neighbor's place, the Johnsons have he forage on the home place they can grazing when the herd returns. grazing when the herd returns.
This gives them several risk management options should the lease
coming years.
*The Johnson operato study example created to den onanstrate RightRisk tools and their applications. No identification with actual persons (huing or deceased), places, or
agricultural operation is intended nor should be inferred.
\qquad Department of Agriculturala and AApplied Economics in the Univesity of Wyoming
College of Agriculure and Naturual College of Agriculture and Natural
Resources, and Jobn Hewlett is a furm
 lepartrment. Hewlett may be reached 1 an
$3077766-260$ or

Looking at the lease from yet another viewpoint, consider a good
forage year that allows the Johnsons orun additional calves on the lease. We select Total Lease Arrangement
and Animals per Year as the uncertain yariable. Thinking optimistically, the Johnsons set the low value at 30 head
and the high at 50 , with the most likely and the high at 50 , with the most likel.
femaining at 34.5 head after death losses. Results describe a 50 -percent probability of a net return of no more
than $\$ 17.40 /$ head, ranging between han $\$ 17.40 /$ head, ranging between
$\$ 14.50 /$ head and $\$ 24.20$ (Figure 5). Decision
The Johnsons now have a more
potentia I lease arrangement. On the $\$ 120$ acre and the orage is valued include their cow depreciation, the split between the two parties is nearly expenses and turn a small profit under he most likely scenario, which was his Soal in entering the agreement. The
hnsons have determined they can approximately break-even, covering heir costs of entering into this agreement, and any additional return
would go to cover their annual cow vould go to cover their an
depreciation of $\$ 28,000$. Keep in mind, that in addition to the lease payment, the Johnsons
estimated they would incur only about

